Иллюстрированный самоучитель по Adobe Audition 1.5


Взвешенный спектр - часть 2


Уместен вопрос: вполне ли адекватен описанный математический алгоритм тому спектральному анализу, который проводят реальные анализаторы спектра, и тому, который выполняют органы слуха и мозг человека? Ответ: нет, не вполне.

Основная проблема состоит в том, что прибор, анализирующий спектр, и человек обладают конечной памятью. Былые события, подробности хода любого процесса постепенно стираются в ней. Это означает, что чем больше удалены в прошлое отсчеты анализируемого сигнала, тем меньший вклад они вносят в накопление той самой суммы произведений отсчетов, которая, в конце концов, определяет значение спектрального коэффициента.

Учет реальных свойств памяти анализаторов спектра осуществляется с помощью весовых функций. Весовая функция описывает зависимость вклада предшествующих отсчетов исследуемого сигнала в вычисляемый спектр. Наглядное представление о весовой функции дает форма так называемого спектрального окна.

Тот спектральный анализ, о котором мы вели речь до сих пор, соответствует спектральному окну прямоугольной формы: весовая функция равна единице в пределах спектрального окна и равна нулю вне его. При анализе текущего спектра начало спектрального окна совпадает с началом отсчета времени, а конец приходится на текущий момент времени. Текущее время идет вперед, правая граница спектрального окна смещается, поэтому каждому конкретному моменту времени завершения анализа соответствует своя ширина спектрального окна. Если вычисляется мгновенный спектр, то спектральное окно скользит вдоль оси времени, не изменяя своей ширины.

Однако в большей степени суть реального спектрального анализа отражает экспоненциальная весовая функция.

Прямоугольное и экспоненциальное спектральные окна используются при вычислении спектра наиболее часто. Первое соответствует идеальному анализатору с бесконечно большой памятью, второе удачно отражает свойства человеческого мозга и реальных анализаторов спектра на основе резонансных фильтров. Наряду с этими, хотя не столь широко, применяются и другие весовые функции.Трудно дать конкретные рекомендации по поводу предпочтительности использования той или иной из них. Пожалуй, единственный совет может состоять в том, что следует остановиться на какой-то одной весовой функции. Только тогда у вас будет уверенность в том, что различия результатов анализа обусловлены различием свойств сигналов, а не методов расчета. Целесообразно также выбирать одну и ту же весовую функцию, когда при работе с одним и тем же сигналом вы решаете несколько задач, в которых применяются спектральные преобразования.




Начало  Назад  Вперед